2013 Consumer Confidence Report

Water System Name: Moss Landing Harbor District WS #2701515 Report Date: February, 2014

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2013 and may include earlier monitoring data.

Este informe contiene información muy importante sobre su agua potable.

Tradúzcalo ó hable con alguien que lo entienda bien.

Type of water source(s) in use: Two (2) Groundwater wells

Name & location of source(s): Well 1 (Primary) and 3 are located in Northern Monterey County

Drinking Water Source Assessment information: The source is considered vulnerable to septic systems, high density;

concentrated animal feeding operations

Time and place of regularly scheduled board meetings for public participation: 6:30 pm every third Wednesday of

each month at: 136 San Juan Road, Royal Oaks (Pajaro), CA 95076

For more information, contact: Don Rosa <u>info@pajarosunnymesa.com</u> Phone: (831) 722-1389 / 663-2181

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Variances and Exemptions: Department permission to exceed an MCL or not comply with a treatment technique under certain conditions.

ND: not detectable at testing limit

ppm: parts per million or milligrams per liter (mg/L)

ppb: parts per billion or micrograms per liter (ug/L)

ppt: parts per trillion or nanograms per liter (ng/L)

ppq: parts per quadrillion or picogram per liter (pg/L)

pCi/L: picocuries per liter (a measure of radiation)

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial
 processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural
 application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the state Department of Public Health (Department) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. Department regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, 7, and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The Department allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

1 /	TO THE RESERVE OF THE PARTY OF		attivation of the state of the state of the state of			allerijima maja aribininki barildeniban kaj fladika albanim Principa sa ma	
TAB	LE 1 -	SAMPLING	RESULTS	SHOWING T	HE DETECT	TION OF	COLIFORM BACTERIA
Microbiological Contaminants (complete if bacteria detected)		Highest No. of Detections	No. of months in violation	MCL		MCLG	Typical Source of Bacteria
'		(In a mo.) 0	0	More than 1 sample in a month with a detection		0	Naturally present in the environment
Fecal Coliform or E. coli (In the year) A routine sample and a sample detect total colif and either sample also defecal coliform or E. coli		tal coliform e also detects	0	Human and animal fecal waste			
TA	BLE 2	– SAMPLIN	G RESUL	rs showing	THE DETE	CTION OF	LEAD AND COPPER
Lead and Copper (complete if lead or copper detected in the last sample set)		No. of samples collected	90 th percentile level detected	No. sites exceeding AL	AL	PHG	Typical Source of Contaminant
Lead (ppb) 9/05/13		10	ND		15	0.2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of nature deposits
Copper (ppm) 9/05/13		10	.13		1.3	0.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
		TABLE 3 -	-SAMPLI	NG RESULTS	FOR SODIU	JM AND H	ARDNESS
Chemical or Consti (and reporting un		Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
41 /	ell 1 ell 3	6/21/12 8/15/13	47 45	47-51	none	none	Salt present in the water and is generally naturally occurring
d'i	ell 1 ell 3	6/21/12 8/15/13	134 133		none	none	Sum of polyvalent cations present in the water, generally magnesium and calcium,

^{*}Any violation of an MCL or AL is asterisked. Additional information regarding the violation is provided later in this report.

TABLE 4 DETEC	TION OF (CONTAMI	NANTS WIT	ΓΗ Α <u>PRIN</u>	MARY DRIN	KING WATER STANDARD	
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant	
Gross Alpha (pCi/L)	12/8/11	.456	±1.27	15	(0)	Erosion of natural deposits	
Arsenic (ppb) – Well 1 Arsenic (ppb) – Well 3	6/21/12 8/15/13	2 2		10	.004	Erosion of natural deposits; runoff from orchards; glass and electronic production waster	
Fluoride – Well 1 Fluoride – Well 3	6/21/12 8/15/13	.10 ND		2	1	Erosion of natural deposits; discharge from fertilizer and aluminum factories	
Nitrate – Well 1 Nitrate – Well 3	6/12/13 8/15/13	2 ND		45	45	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits	
Haloacetic Acids (ppb)	9/15/11	ND		60	NA	Byproduct of drinking water disinfection	
Total Trihalomethanes (ppb)	9/15/11	.65		80	NA	Byproduct of drinking water disinfection	
TABLE 5 – DETECTION OF CONTAMINANTS WITH A SECONDARY DRINKING WATER STANDARD							
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant	
Turbidity (unit) — Well I Turbidity (unit) — Well 3	6/21/12 8/15/13	ND .08		5.		Soil runoff	
Total Dissolved Solids – Well 1 Total Dissolved Solids – Well 3	6/21/12 8/15/13	306 291		1000		Runoff/leaching from natural deposits	
Specific Conductance (µS(cm)Well 1 Specific Conductance (µS(cm)Well 3	6/21/12 8/15/13	486 479		1600		Substances that form ions when in water; seawater influence	
Chloride – Well 1 Chloride – Well 3	6/21/12 8/15/13	47 61	47-56	500		Runoff/leaching from natural deposits; seawate influence	
Sulfate – Well 1 Sulfate – Well 3	6/21/12 8/15/13	8 7	8-11	500		Runoff/leaching from natural deposits; industrial wastes	
[ABLE 6 –	DETECTI	ON OF UNR	EGULAT	ED CONTAI	MINANTS	
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notifica	ntion Level	Health Effects Language	
Chromium VI	6/10/03	3.8			NΛ	NA	
Vanadium (ppb)	6/10/03	13			50	Babies of some pregnant women who drink water containing vanadium in excess of the notification level may have an increased risk of developmental effects, based on studies in laboratory animals	

^{*}Any violation of an MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosportdium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Pajaro/Sunny Mesa Community Services District is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATION OF A MCL, MRDL, AL, TT, OR MONITORING AND REPORTING REQUIREMENT							
Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language			

For Water Systems Providing Ground Water as a Source of Drinking Water

TABLE 7 – SAMPLING RESULTS SHOWING FECAL INDICATOR-POSITIVE GROUND WATER SOURCE SAMPLES							
Microbiological Contaminants (complete if fecal-indicator detected) Total No. of Detections Sample MCL (MCLG) [MRDL] Typical Source of Contaminant							
E. coli	(In the year)		0	(0)	Human and animal fecal waste		
Enterococci	(In the year)	•	TT	n/a	Human and animal fecal waste		
Coliphage	(In the year)		TT	n/a	Human and animal fecal waste		

Summary Information for Fecal Indicator-Positive Ground Water Source Samples, Uncorrected Significant Deficiencies, or Ground Water TT

SPECIAL NOTICE OF FECAL INDICATOR-POSITIVE GROUND WATER SOURCE SAMPLE									
. Samuel Characteristics and the matter than the foreign the 12 (Character McAntelhale Character)	SPECIAL NOTICE FOR UNCORRECTED SIGNIFICANT DEFICIENCIES								
VIOLATION OF GROUND WATER TT									
TT Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language					

For Systems Providing Surface Water as a Source of Drinking Water

TABLE 8 - SAMPLING RESULTS SHOWING TREATMENT OF SURFACE WATER SOURCES					
Treatment Technique ^(a) (Type of approved filtration technology used)					
Turbidity Performance Standards (b) (that must be met through the water treatment process)	Turbidity of the filtered water must: 1 - Be less than or equal to NTU in 95% of measurements in a month. 2 - Not exceed NTU for more than eight consecutive hours. 3 - Not exceed NTU at any time.				
Lowest monthly percentage of samples that met Turbidity Performance Standard No. 1.					
Highest single turbidity measurement during the year					
Number of violations of any surface water treatment requirements					

Summary Information for Violation of a Surface Water TT

VIOLATION OF A SURFACE WATER TT							
TT Violation							

Summary Information for Operating Under a Variance or Exemption

⁽a) A required process intended to reduce the level of a contaminant in drinking water.

⁽b) Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtration performance. Turbidity results which meet performance standards are considered to be in compliance with filtration requirements.

^{*}Any violation of a TT is marked with an asterisk. Additional information regarding the violation is provided below.